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Abstract 

CAPTCHAs are computer-generated tests that humans can pass but current 
computer systems cannot. CAPTCHAs provide a method for automatically 
distinguishing a human from a computer program, and therefore can protect 
Web services from abuse by so-called “bots.” Most CAPTCHAs consist of 
distorted images, usually text, for which a user must provide some 
description. Unfortunately, visual CAPTCHAs limit access to the millions 
of visually impaired people using the Web. Audio CAPTCHAs were 
created to solve this accessibility issue; however, the security of audio 
CAPTCHAs was never formally tested. Some visual CAPTCHAs have 
been broken using machine learning techniques, and we propose using 
similar ideas to test the security of audio CAPTCHAs. Audio CAPTCHAs 
are generally composed of a set of words to be identified, layered on top of 
noise. We analyzed the security of current audio CAPTCHAs from popular 
Web sites by using AdaBoost, SVM, and k-NN, and achieved correct 
solutions for test samples with accuracy up to 71%. Such accuracy is 
enough to consider these CAPTCHAs broken. Training several different 
machine learning algorithms on different types of audio CAPTCHAs 
allowed us to analyze the strengths and weaknesses of the algorithms so 
that we could suggest a design for a more robust audio CAPTCHA. 

 

1 Introduct ion 
CAPTCHAs [1] are automated tests designed to tell computers and humans apart by 
presenting users with a problem that humans can solve but current computer programs 
cannot. Because CAPTCHAs can distinguish between humans and computers with high 
probability, they are used for many different security applications: they prevent bots from 
voting continuously in online polls, automatically registering for millions of spam email 
accounts, automatically purchasing tickets to buy out an event, etc. Once a CAPTCHA is 
broken (i.e., computer programs can successfully pass the test), bots can impersonate 
humans and gain access to services that they should not. Therefore, it is important for 
CAPTCHAs to be secure. 

To pass the typical visual CAPTCHA, a user must correctly type the characters displayed in 
an image of distorted text. Many visual CAPTCHAs have been broken with machine 
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learning techniques [2]-[3], though some remain secure against such attacks. Because 
visually impaired users who surf the Web using screen-reading programs cannot see this type 
of CAPTCHA, audio CAPTCHAs were created. Typical audio CAPTCHAs consist of one 
or several speakers saying letters or digits at randomly spaced intervals. A user must 
correctly identify the digits or characters spoken in the audio file to pass the CAPTCHA. To 
make this test difficult for current computer systems, specifically automatic speech 
recognition (ASR) programs, background noise is injected into the audio files.  

Since no official evaluation of existing audio CAPTCHAs has been reported, we tested the 
security of audio CAPTCHAs used by many popular Web sites by running machine learning 
experiments designed to break them. In the next section, we provide an overview of the 
literature related to our project. Section 3 describes our methods for creating training data, 
and section 4 describes how we create classifiers that can recognize letters, digits, and noise. 
In section 5, we discuss how we evaluated our methods on widely used audio CAPTCHAs 
and we give our results. In particular, we show that the audio CAPTCHAs used by sites 
such as Google and Digg are susceptible to machine learning attacks. Section 6 mentions the 
proposed design of a new more secure audio CAPTCHA based on our findings. 

 
2 Lit erature rev i ew 
To break the audio CAPTCHAs, we derive features from the CAPTCHA audio and use 
several machine learning techniques to perform ASR on segments of the CAPTCHA. There 
are many popular techniques for extracting features from speech. The three techniques we use 
are mel-frequency cepstral coefficients (MFCC), perceptual linear prediction (PLP), and 
relative spectral transform-PLP (RAS TA-PLP). MFCC is one of the most popular speech 
feature representations used. Similar to a fast Fourier transform (FFT), MFCC transforms an 
audio file into frequency bands, but (unlike FFT) MFCC uses mel-frequency bands, which 
are better for approximating the range of frequencies humans hear. PLP was designed to 
extract speaker-independent features from speech [4]. Therefore, by using PLP and a variant 
such as RAS TA-PLP, we were able to train our classifiers to recognize letters and digits 
independently of who spoke them. Since many different people recorded the digits used in 
one of the types of audio CAPTCHAs we tested, PLP and RAS TA-PLP were needed to 
extract the features that were most useful for solving them. 

In [4]-[5], the authors conducted experiments on recognizing isolated digits in the presence 
of noise using both PLP and RAS TA-PLP. However, the noise used consisted of telephone 
or microphone static caused by recording in different locations. The audio CAPTCHAs we 
use contain this type of noise, as well as added vocal noise and/or music, which is supposed 
to make the automated recognition process much harder. 

The authors of [3] emphasize how many visual CAPTCHAs can be broken by successfully 
splitting the task into two smaller tasks: segmentation and recognition. We follow a similar 
approach in that we first automatically split the audio into segments, and then we classify 
these segments as noise or words. 

In early March 2008, concurrent to our work, the blog of Wintercore Labs [6] claimed to 
have successfully broken the Google audio CAPTCHA. After reading their Web article and 
viewing the video of how they solve the CAPTCHAs, we are unconvinced that the process 
is entirely automatic, and it is unclear what their exact pass rate is. Because we are unable to 
find any formal technical analysis of this program, we can neither be sure of its accuracy nor 
the extent of its automation. 
 
3  Creat ion of  tra in i ng data 
Since automated programs can attempt to pass a CAPTCHA repeatedly, a CAPTCHA is 
essentially broken when a program can pass it more than a non-trivial fraction of the time; 
e.g., a 5% pass rate is enough. 

Our approach to breaking the audio CAPTCHAs began by first splitting the audio files into 
segments of noise or words: for our experiments, the words were spoken letters or digits.  We 
used manual transcriptions of the audio CAPTCHAs to get information regarding the 
location of each spoken word within the audio file. We were able to label our segments 
accurately by using this information. 
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We gathered 1,000 audio CAPTCHAs from each of the following Web sites: google.com, 
digg.com, and an older version of the audio CAPTCHA in recaptcha.net. Each of the 
CAPTCHAs was annotated with the information regarding letter/digit locations provided by 
the manual transcriptions. For each type of CAPTCHA, we randomly selected 900 samples 
for training and used the remaining 100 for testing.  

Using the digit/letter location information provided in the manual CAPTCHA 
transcriptions, each training CAPTCHA is divided into segments of noise, the letters a-z, or 
the digits 0-9, and labeled as such. We ignore the annotation information of the 
CAPTCHAs we use for testing, and therefore we cannot identify the size of those segments. 
Instead, each test CAPTCHA is divided into a number of fixed-size segments. The segments 
with the highest energy peaks are then classified using machine learning techniques (Figure 
1). Since the size of a feature vector extracted from a segment generally depends on the size 
of the segment, using fixed-size segments allows each segment to be described with a feature 
vector of the same length.  We chose the window size by listening to a few training 
segments and adjusted accordingly to ensure that the segment contained the entire 
digit/letter.  There is undoubtedly a more optimal way of selecting the window size, 
however, we were still able to break the three CAPTCHAs we tested with our method. 

 

 
 

Figure 1: A test audio CAPTCHA with the fixed-size segments containing the highest 
energy peaks highlighted. 

 

The information provided in the manual transcriptions of the audio CAPTCHAs contains a 
list of the time intervals within which words are spoken. However, these intervals are of 
variable size and the word might be spoken anywhere within this interval. To provide fixed-
size segments for training, we developed the following heuristic. First, divide each file into 
variable-size segments using the time intervals provided and label each segment accordingly.  
Then, within each segment, detect the highest energy peak and return its fixed-size 
neighborhood labeled with the current segment’s label. This heuristic achieved nearly perfect 
labeling accuracy for the training set. Rare mistakes occurred when the highest energy peak 
of a digit or letter segment corresponded to noise rather than to a digit or letter. 

To summarize this subsection, an audio file is transformed into a set of fixed-size segments 
labeled as noise, a digit between 0 and 9, or a letter between a and z. These segments are 
then used for training. Classifiers are trained for one type of CAPTCHA at a time. 
 
4  C las s i f i er construct ion 
From the training data we extracted five sets of features using twelve MFCCs and twelfth-
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order spectral (SPEC) and cepstral (CEPS) coefficients from PLP and RAS TA-PLP. The 
Matlab functions for extracting these features were provided online at [7] and as part of the 
Voicebox package. We use AdaBoost, SVM, and k-NN algorithms to implement automated 
digit and letter recognition. We detail our implementation of each algorithm in the 
following subsections. 
 
4 .1  A d a B o o s t  

Using decision stumps as weak classifiers for AdaBoost, anywhere from 11 to 37 ensemble 
classifiers are built. The number of classifiers built depends on which type of CAPTCHA we 
are solving. Each classifier trains on all the segments associated with that type of 
CAPTCHA, and for the purpose of building a single classifier, segments are labeled by 
either -1 (negative example) or +1 (positive example). Using cross-validation, we choose to 
use 50 iterations for our AdaBoost algorithm. A segment can then be classified as a 
particular letter, digit, or noise according to the ensemble classifier that outputs the number 
closest to 1. 
 
4 .2  S u p p o rt  v ecto r ma ch i n e  

To conduct digit recognition with SVM, we used the C++ implementations of libSVM [8] 
version 2.85 with C-SMV and RBF kernel. First, all feature values are scaled to the range of 
-1 to 1 as suggested by [8]. The scale parameters are stored so that test samples can be 
scaled accordingly. Then, a single multiclass classifier is created for each set of features 
using all the segments for a particular type of CAPTCHA. We use cross-validation and grid 
search to discover the optimal slack penalty (C=32) and kernel parameter (γ=0.011). 
 
4 .3  k - n ea rest  n e ig h b o r  (k -NN) 

We use k-NN as our final method for classifying digits. For each type of CAPTCHA, five 
different classifiers are created by using all of the training data and the five sets of features 
associated with that particular type of CAPTCHA. Again we use cross-validation to discover 
the optimal parameter, in this case k=1.  We use Euclidian distance as our distance metric. 
 
5  Ass e s sm ent  of  current  aud io CAPTCHAs 
Our method for solving CAPTCHAs iteratively extracts an audio segment from a 
CAPTCHA, inputs the segment to one of our digit or letter recognizers, and outputs the 
label for that segment. We continue this process until the maximum solution size is reached 
or there are no unlabeled segments left. Some of the CAPTCHAs we evaluated have 
solutions that vary in length. Our method ensures that we get solutions of varying length 
that are never longer than the maximum solution length. A segment to be classified is 
identified by taking the neighborhood of the highest energy peak of an as yet unlabeled part 
of the CAPTCHA. 

Once a prediction of the solution to the CAPTCHA is computed, it is compared to the true 
solution. Given that at least one of the audio CAPTCHAs allows users to make a mistake in 
one of the digits (e.g., reCAPTCHA), we compute the pass rate for each of the different types 
of CAPTCHAs with all of the following conditions: 

• The prediction matches the true solution exactly. 

• Inserting one digit into the prediction would make it match the solution exactly. 

• Replacing one digit in the prediction would make it match the solution exactly. 

• Removing one digit from the prediction would make it match the solution exactly. 

However, since we are only sure that these conditions apply to reCAPTCHA audio 
CAPTCHAs, we also calculate the percentage of exact solution matches in our results for 
each type of audio CAPTCHA. These results are described in the following subsections.  
 
5 .1  Go o g le  

Google audio CAPTCHAs consist of one speaker saying random digits 0-9, the phrase 
“once again,” followed by the exact same recorded sequence of digits originally presented. 



5 

The background noise consists of human voices speaking backwards at varying volumes. A 
solution can range in length from five to eight words. We set our classifier to find the 12 
loudest segments and classify these segments as digits or noise.  Because the phrase “once 
again” marks the halfway point of the CAPTCHA, we preprocessed the audio to only serve 
this half of the CAPTCHA to our classifiers. It is important to note, however, that the 
classifiers were always able to identify the segment containing “once again,” and these 
segments were identified before all other segments. Therefore, if necessary, we could have 
had our system cut the file in half after first labeling this segment. 

For AdaBoost, we create 12 classifiers: one classifier for each digit, one for noise, and one 
for the phrase “once again.”  Our results (Table 1) show that at best we achieved a 90% pass 
rate using the “one mistake” passing conditions and a 66% exact solution match rate. Using 
SVM and the “one mistake” passing conditions, at best we achieve a 92% pass rate and a 
67% exact solution match. For k-NN, the “one mistake” pass rate is 62% and the exact 
solution match rate is 26%.  

 

Table 1: Google audio CAPTCHA results: Maximum 67% accuracy was achieved by SVM. 

 

Classifiers Used 

AdaBoost SVM k-NN  
One 

mistake 
exact 
match 

one 
mistake 

exact 
match 

one 
mistake 

exact 
match 

MFCC 88% 61% 92% 67% 30% 1% 

PLP-
SPEC 90% 66% 90% 67% 60% 26% 

PLP-
CEPS 90% 66% 92% 67% 62% 23% 

RAS TA-
PLP-
SPEC 

88% 48% 90% 61% 29% 1% Fe
at

ur
es

 U
se

d 

RAS TA-
PLP-
CEPS 

90% 63% 92% 67% 33% 2% 

 
5 .2  D ig g  

Digg CAPTCHAs also consist of one speaker, in this case saying a random combination of 
letters and digits. The background noise consists of static or what sounds like trickling 
water and is not continuous throughout the entire file. We noticed in our training data that 
the following characters were never present in a solution: 0, 1, 2, 5, 7, 9, i, o, z. Since the 
Digg audio CAPTCHA is also the verbal transcription of the visual CAPTCHA, we believe 
that these characters are excluded to avoid confusion between digits and letters that are 
similar in appearance. The solution length varies between three and six words. Using 
AdaBoost, we create 28 classifiers: one classifier for each digit or letter that appears in our 
training data and one classifier for noise. Perhaps because we had fewer segments to train 
with and there was a far higher proportion of noise segments,  AdaBoost failed to produce any 
correct solutions. We believe that the overwhelming number of negative training examples 
versus the small number of positive training samples used to create each decision stump 
severely affected AdaBoost’s ability to classify audio segments correctly.  

A histogram of the training samples is provided in Figure 2 to illustrate the amount of 
training data available for each character. When using SVM, the best feature set passed with 
96% using “one mistake” passing conditions and passed with 71% when matching the 
solution exactly. For k-NN, the best feature set produced a 90% “one mistake” pass rate and 
a 49% exact solution match. Full results can be found in Table 2. 



6 

 

Table 2: Digg audio CAPTCHA results: Maximum 71% accuracy was achieved by SVM. 

 

Classifiers Used 

AdaBoost SVM k-NN  
one 

mistake 
exact 
match 

one 
mistake 

exact 
match 

one 
mistake 

exact 
match 

MFCC - - 96% 71% 89% 49% 

PLP-
SPEC - - 94% 65% 90% 47% 

PLP-
CEPS - - 96% 71% 64% 17% 

RAS TA-
PLP-
SPEC 

- - 17% 3% 67% 17% Fe
at

ur
es

 U
se

d 

RAS TA-
PLP-
CEPS 

- - 96% 71% 82% 34% 
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Figure 2: Digg CAPTCHA training data distribution. 
 

5 .3  reC A PTC HA  

The older version of reCAPTCHA’s audio CAPTCHAs we tested consist of several speakers 
who speak random digits. The background noise consists of human voices speaking 
backwards at varying volumes. The solution is always eight digits long.  For AdaBoost, we 
create 11 classifiers: one classifier for each digit and one classifier for noise. Because we 
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know that the reCAPTCHA passing conditions are the “one mistake” passing conditions, 
SVM produces our best pass rate of 58%. Our best exact match rate is 45% ( Table 3). 

 

Table 3: reCAPTCHA audio CAPTCHA results: Maximum 45% accuracy was achieved by 
SVM. 

 

Classifiers Used 

AdaBoost SVM k-NN  
one 

mistake 
exact 
match 

one 
mistake 

exact 
match 

one 
mistake 

exact 
match 

MFCC 18% 6% 56% 43% 22% 11% 

PLP-
SPEC 27% 10% 58% 39% 43% 25% 

PLP-
CEPS 23% 10% 56% 45% 29% 14% 

RAS TA-
PLP-
SPEC 

9% 3% 36% 18% 24% 4% 

Fe
at

ur
es

 U
se

d 

RAS TA-
PLP-
CEPS 

9% 3% 46% 30% 32% 12% 

 
6 Propert i e s of  weak versus  strong CAPTCHAs 
From our results, we note that the easiest CAPTCHAs to break were from Digg.  Google 
had the next strongest CAPTCHAs followed by the strongest from reCAPTCHA.  Although 
the Digg CAPTCHAs have the largest vocabulary, giving us less training data per label, the 
same woman recorded them all.  More importantly,  the same type of noise is used 
throughout the entire CAPTCHA.  The noise sounds like running water and static which 
sounds very different from the human voice and does not produce the same energy spikes 
needed to locate segments, therefore making segmentation quite easy. The CAPTCHAs from 
Google and reCAPTCHA used other human voices for background noise, making 
segmentation much more difficult.  Although Google used a smaller vocabulary than Digg 
and also only used one speaker, Google’s background noise made the CAPTCHA more 
difficult to solve.  After listening to a few of Google’s CAPTCHAs, we noticed that 
although the background noise consisted of human voices, the same background noise was 
repeated.  reCAPTCHA had similar noise to Google, but they had a larger selection of noise 
thus making it harder to learn.  reCAPTCHA also has the longest solution length making it 
more difficult to get perfectly correct.  Finally, reCAPTCHA used many different speakers 
causing it to be the strongest CAPTCHA of the three we tested.  In conclusion, an audio 
CAPTCHA that consists of a finite vocabulary and background noise should have multiple 
speakers and noise similar to the speakers. 
 
7  Recomm endat ions for creat i ng stronge r audio 
CAPTCHAs 
Due to our success in solving audio CAPTCHAs, we have decided to start developing new 
audio CAPTCHAs that our methods, and machine learning methods in general, will be less 
likely to solve. From our experiments, we note that CAPTCHAs containing longer 
solutions and multiple speakers tend to be more difficult to solve. Also, because our 
methods depend on the amount of training data we have, having a large vocabulary would 
make it more difficult to collect enough training data.  Already since obtaining these results, 
reCAPTCHA.net has updated their audio CAPTCHA to contain more distortions and a 
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larger vocabulary: the digits 0 through 99. In designing a new audio CAPTCHA we are also 
concerned with the human pass rate. The current human pass rate for the reCAPTCHA audio 
CAPTCHAs is only 70%. To develop an audio CAPTCHA with an improved human pass 
rate, we plan to take advantage of the human mind’s ability to understand distorted audio 
through context clues. By listening to a phrase instead of to random isolated words, humans 
are better able to decipher distorted utterances because they are familiar with the phrase or 
can use contextual clues to decipher the distorted audio. Using this idea, the audio for our 
new audio CAPTCHA will be taken from old-time radio programs in which the poor quality 
of the audio makes transcription by ASR systems difficult. Users will be presented with an 
audio clip consisting of a 4-6 word phrase. Half of the CAPTCHA consists of words, which 
validate a user to be human, while the other half of the words need to be transcribed. This is 
the same idea behind the visual reCAPTCHA that is currently digitizing text on which OCR 
fails. We expect that this new audio CAPTCHA will be more secure than the current version 
and easier for humans to pass. Initial experiments using this idea show this to be true [9]. 
 
8  Conc lu s ion  
We have succeeded in “breaking” three different types of widely used audio CAPTCHAs, 
even though these were developed with the purpose of defeating attacks by machine learning 
techniques. We believe our results can be improved by selecting optimal segment sizes, but 
that is unnecessary given our already high success rate. For our experiments, segment sizes 
were not chosen in a special way; occasionally yielding results in which a segment only 
contained half of a word, causing our prediction to contain that particular word twice. We 
also believe that the AdaBoost results can be improved, particularly for the Digg audio 
CAPTCHAs, by ensuring that the number of negative training samples is closer to the 
number of positive training samples. We have shown that our approach is successful and can 
be used with many different audio CAPTCHAs that contain small finite vocabularies. 
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